

INNOVATIVE TECHNOLOGIES FOR WASTEWATER TREATMENT, REUSE AND RESOURCE RECOVERY

- ANDICOS

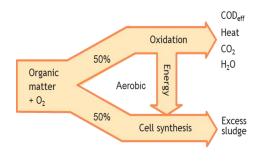
Aditya Sharma (IITK) and Sofie Van Ermen (VITO) September 27-28, 2023 | INDIA

WORKSHOP

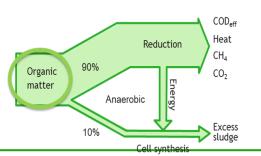
Innovative technologies for wastewater treatment, reuse and resource recovery

TABLE OF CONTENTS

- ANDICOS Concept
- IPC Membranes
- Anaerobic digestion
- Conclusions

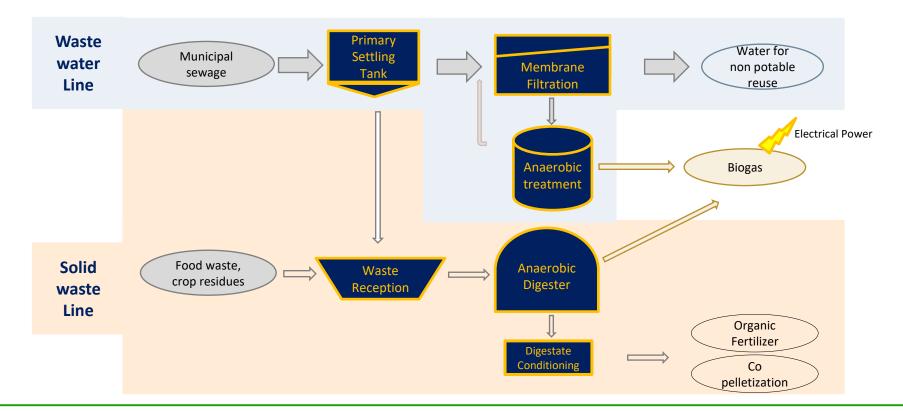


WHAT IS THE ANDICOS APPROACH?


Move away from aerobic treatment processes to anaerobic treatment

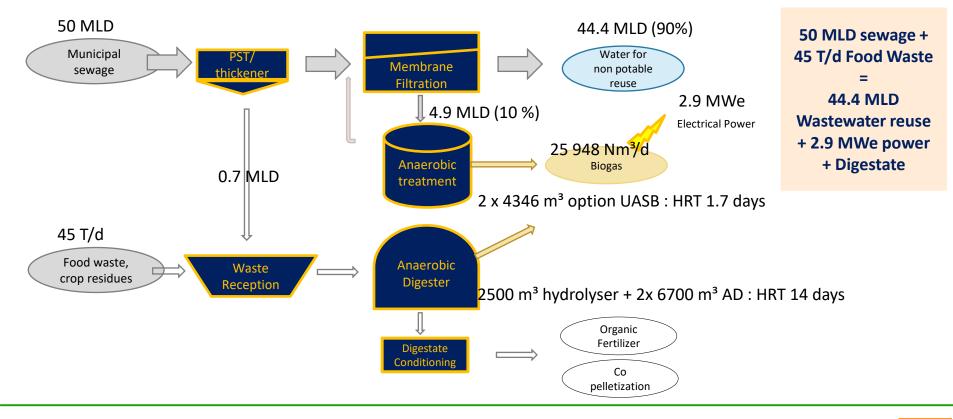
Andicos[™]

Anaerobic Digestion by Combining Organic Waste and Sewage


From energy consumption to energy production plus reduction in GHG emissions & wastewater

This project has received funding from the *European Union's Horizon 2020 resear* **TEUSE** This project has been co-funded by Department of Biotechnology (DBT), Government of India.

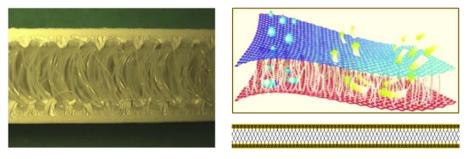
ANDICOS - PROCESS FLOW DIAGRAM



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821051. This project has been co-funded by Department of Biotechnology (DBT), Government of India.

۲

Conceptual model assuming 50 MLD sewage treatment plant



Integrated Permeate Channel (IPC) Ultrafiltration membranes

Flat-sheet membranes

Pore size: 40 nm

Total surface area: 0.11 m²

Cross-sectional view and schematic representation of spacer fabric of IPC membrane (Doyen et al., 2008)

	Flux	Duration	
Filtration	15 L/h-m ²		
Backwash	22.5 L/h-m ²		
Relaxation	0		
Net/Total	12 L/h-m ²	10 min	

WATER QUALITY

Period 2020

- Influent COD : 1000 1200 mg/L
- TSS : 1000 mg/L
- Chromium > 6 ppm

- Stable membrane process at filtration flux 20 lmh
- Low cleaning frequency (14-21 days)
- Volumetric concentration up to factor 10-20 (permeate volume 90-95%)
- COD loss : 33%

Influent: High COD, TSS & Total Cr

Effluent is good quality Low COD, TSS & Total Cr (ammonia not removed)

**** * * ***

WATER QUALITY

Period 2021 – 2022

- Influent COD decreased to average 300 mg/L
- Increased cleaning frequency
- COD loss : using air > 50%, using N₂ < 50%
- 100 % removal of Coliforms

Major reduction in influent: COD only 300 mg/l

Concentration of sewage more difficult due to excessive biodegradation

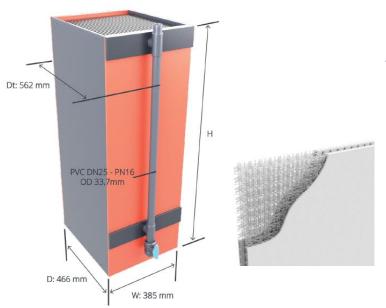
Total Coliform removal

Physical cleaning Removing the foulant layer using a sponge while the membrane is submerged under tap water.

Chemical cleaning

Cleaning chemical: NaOCl Duration: Total 50 mins **pH:** 8 **Temperature:** 40°C

Removal Efficiency of IPC Membranes:


- COD > 85%
- TSS 100%
- Coliform 100%
- NH₃ > 90%

ANDICOS MEMBRANE PILOT

Pilot setup of ANDICOS technology.

Total membrane area: 25 m², Working Volume of Membrane tank: 5000 L, Treated water storage: 2000 L, Anaerobic Digestor: 5000 L

> Membrane material PVDF, proprietary blend Membrane layer thickness > 600 μm Total membrane thickness

> 3.5 mm

Membranes backwashable upto 2 bar pressure

PILOT - OPERATION AND MAINTENANCE

	Filtration	Backwash	Relaxation	Net / Total
Flux	15 L/h-m ²	30 L/h-m ²	0	11.5 L/h-m ²
Duration				10 min

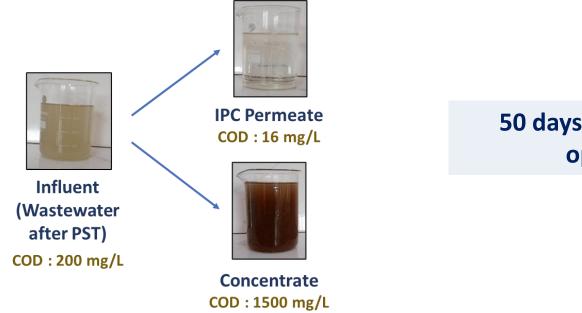
Average operational duration = 22 hours

Total wastewater treated in a day ~ 6000 L

Total concentrate removed per day = 100 L

Air flow rate = $20 \text{ Nm}^3/\text{h}$

Membrane Cleaning


- When TMP ~ 200 mmHg and additional backwash is not effective.
- Sodium Hypochlorite: 300 ppm active chlorine.
- Process: Chemically Enhanced Backwashing (CEB).
- Duration: 2 hours (1 hour soaking + 2-3 cycles of backwash + aeration)

ANDICOS MEMBRANE PILOT - RESULTS

50 days of continuous operation

ANDICOS – ANAEROBIC DIGESTION LAB TESTS

- Reactor volume : 40 L
- Influent : primary sludge Jajmau STP Kanpur
- Semi-Continuous operation at 40 days HRT
- Digester pH : 7.3 7.6.

No tests using mix of primary sludge and food waste: reluctance to mix fecal and non fecal waste streams:

- fecal based fertilisers can contaminate soils
- logistical demands to bring food waste to sewage treatment plant

 Feed characteristics

 COD Total
 : 34 - 35 g/L

 COD Soluble
 : 0.12 - 0.14 g/L

 TS :
 : 84 - 90 g/L

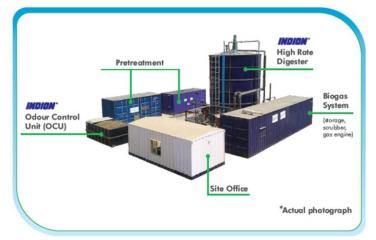
 VS :
 : 24 - 28 g/L

 VS/TS :
 : 0.28 - 0.32

 Sulphate:
 : 23 - 25 mg/L

Effluent characteristics COD _{Total} : 27 - 28 g/L COD _{Soluble} : 0.4 - 0.5 g/L TS: 90 - 92 g/L VS: 24 - 25 g/L VS/TS: 0.26 - 0.27 Sulphate: 23 - 25 mg/L

Biogas production is stable at 4 litres per day



ANAEROBIC DIGESTION PILOT HYDERABAD

- Design Basis for anaerobic digester pilot plant
 - Organic solid waste from community Kitchen : 1000 kg/day
 - STP sludge : 2000 6000 kg/day (2 6 m3/day of 1% consistency)
- Biogas & Fertilizer generated from pilot plant
 - Biogas production (65 % methane): ± 10 Nm³/h
 - Gross electrical output: ± 20 kW/hr
 - Digested sludge –Fertilizer (with 4-5% solids) : ± 493 T/year

CHALLENGES AND TROUBLESHOOTING

- Pilot in corrosive environment damage in PLC circuits, iron parts, etc.
- Changes of sewage characteristics has impact on composition of concentrate stream
 - Loss of organics due to biodegradation results in lower biogas production
- Reluctance to mix fecal and non-fecal wastes reduces biogas production potential

CONCLUSIONS

Why is ANDICOS still potentially relevant for India?

- Converting organics from sewage + solid waste into biogas produces Green Energy + reduces GHG emissions
- Permeate from IPC Filtration can be reused for irrigation or non potable reuse and first treatment step to produce process water for industry
- Approach helps to deal with sewage, primary sludge and organic waste simultaneously

 but would require new waste management approaches
- Co-pelletization is an alternative to producing fertilisers / soil improvers for agriculture

PUBLICATIONS AND CONFERENCES

- <u>Sharma A.</u>, Bose P., Van Ermen S. (2022). Investigating performance of Integrated Permeate Channel membranes for sewage treatment and establishing chemical cleaning protocols. IMSTEC 2022, International Membrane Science and Technology Conference, **Melbourne (Australia)**, 4 - 8 Dec. 2022.
- Van Ermen S., <u>Campling P.</u>, Diels L., Sharma A., Shakya A., Bose P., Shah S. (2023). ANDICOS[™] a wastewater treatment approach that promotes water re-use and energy recovery. 13th IWA International Conference on Water Reclamation and Reuse, **Chennai (India)**, 15 19 Jan. 2023,

IIT Kanpur: Prof. Purnendu Bose, Prof. Vinod Tare, Dr. Arvind Shakya.

VITO, Belgium: Dr. Paul Campling.

Ion Exchange India: Mr. Sachin Shah, Mr. Nitin More, Mr. Sankararaman.

THANK YOU FOR YOUR KIND ATTENTION

Emails: shaditya@iitk.ac.in, sofie.vanermen@vito.be

